Прямые методы ДНК-диагностики. Косвенные методы ДНК-диагностики

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %. Однако на практике указанные методы могут применяться при определенных условиях:
1) известной цитогенетической локализации гена, ответственного за развитие наследственного заболевания,
2) должен быть клонированным ген заболевания и известна его нуклеотидная последовательность.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы). Высокая точность метода прямой ДНК-диагностики в большинстве случаев не требует ДНК-анализа всех членов семьи, так как выявление мутации в соответствующем гене позволяет почти со 100-процентной точностью подтвердить диагноз и определить генотип всех членов семьи больного ребенка, включая гетерозиготных носителей.

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций.
Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Однако к настоящему времени гены многих заболеваний не картированы, неизвестна их экзонно-интронная организация, и многие наследственные болезни отличаются выраженной генетической гетерогенностью, что не позволяет в полной мере использовать прямые методы ДНК-диагностики. Поэтому информативность метода прямой ДНК-диагностики широко варьирует. Так, при диагностике хореи Гентингтона, ахондроплазии она составляет 100 %, при фенилкетонурии, муковосицидозе, адреногенитальном синдроме - от 70 до 80 %, а при болезни Вильсона-Коновалова и миопатии Дюшенна/Бекера — 45-60 %. В связи с этим используются косвенные методы молекулярно-генетической диагностики наследственных болезней.

днк диагностика

Косвенные методы ДНК-диагностики

Косвенные методы ДНК-диагностики основаны на анализе сцепления с исследуемым геном определенного полиморфного локуса (маркера), с помощью которого можно производить маркировку как мутантиых, так и нормальных аллелей и проанализировать их передачу в поколениях, т.е. среди родственников обследуемого лица. Это особенно важно при решении вопроса о пренатальной (дородовой) диагностике наследственного заболевания.

При использовании косвенных методов ДНК-диагностики следует помнить — чем теснее сцепление между маркерным локусом и мутантным геном, тем точнее диагноз. Чтобы свести до минимума ошибку диагностики, необходимо по возможности использовать внутригенные маркеры или использовать два маркерных локуса, фланкирующих мутантный аллель.

Мутационная изменчивость в сайтах рестрикции может быть определена по изменению длины рестрикционных фрагментов ДНК, гибридизирующихся со специфическими ДНК-зондами (ПДРФ-анализ; Restriction Fragment Length Polymorphism, или RFLP-анализ).

Метод ПДРФ-анализа включает проведение нескольких этапов исследования: выделение геномной ДНК; рестрикция выделенной ДНК с помощью специфических эндонуклеаз; электрофоретическое разделение фрагментов ДНК; идентификация фрагментов ДНК, содержащая полиморфный сайт рестрикции с помощью блот-гибридизации по Саузерну. При отсутствии рестрикции ДНК по данным радиоавтографии будет выявляться крупный (неразрезанный фрагмент, или бэнд).

При наличии рестрикции будет выявляться меньший по размерам фрагмент. У лиц, гомозиготных по данному наследственному заболеванию, будет выявляться один бэнд, в то время как у лиц, гетерозиготных по данному наследственному моногенному дефекту, будут определяться оба фрагмента. ПДРФ-анализ значительно упрощается, если имеется возможность специфической амплификации участка ДНК, содержащего полиморфный сайт рестрикции. Проведение в этом случае ПЦР-реакции и рестрикции амплифицированного фрагмента позволяет провести тестирование состояния этого локуса.

Таким образом, косвенная ДНК-диагностика проводится в следующих случаях:
1) когда ген не идентифицирован, а лишь картирован на определенной хромосоме,
2) когда методы прямой ДНК-диагностики не дают результата (например, в силу большой протяженности гена или широком спектре мутационных изменений,
3) при сложной экзонно-интронной организации гена.

При использовании косвенных методов ДНК-диагностики требуется семейный анализ аллелей полиморфных маркеров.
Для косвенной диагностики могут использоваться так называемые гипервариабельные сателлитные повторы. Они являются более информативными методами, чем ПДРФ-анализ, поскольку обладают высоким уровнем гетерозиготности и плотно расположены в каждой из хромосом. В последние годы используются короткие тандемные повторы (STR-повторы, short tandem repeates), которые стабильно наследуются и обладают большим уровнем полиморфизма, а также короткие секвенированные последовательности ДНК с известной генной локализацией, так называемые STS-повторы (sequence tagged sites).

Последние обладают выраженной индивидуальной специфичностью, стабильно наследуются по законам Менделя и находят широкое применение для молекулярно-генетической диагностики моногенных болезней. Они могут также использоваться в качестве молекулярных маркеров мутантных хромосом в семьях высокого риска. Косвенные методы ДНК-диагностики могут использоваться в пренаталньой диагностике практически для всех моногенных заболеваний. Однако для этого необходимо иметь знания о том, что локус является высокополиморфным и находится вблизи от мутантного гена или внутри него. Поэтому для диагностики требуется обследование как можно большего числа родственников (в первую очередь родители—дети), чтобы проследить путь передачи маркеров потомству. Это повышает информативность выбранного маркера.

- Читать далее "Функциональная диагностика в генетике. Функциональная диагностика мукополисахаридозов"

Оглавление темы "Методы диагностики в генетике. Информационные базы данных":
1. Молекулярно-цитогенетические методы диагностики. ДНК-зонды в генетике
2. Методы FISH-диагностики в генетике. Метод гибридизации in situ в кариотипировании
3. Показания для молекулярно-цитогенетического анализа. Принципы молекулярно-генетической диагностики
4. Прямые методы ДНК-диагностики. Косвенные методы ДНК-диагностики
5. Функциональная диагностика в генетике. Функциональная диагностика мукополисахаридозов
6. Виды функциональной диагностики в генетике. Фармакологические пробы в генетике
7. Оценка гипермобильности суставов. Пример применения функциаональной диагностики в генетике
8. Проблемы изучения наследственной патологии. Компьютерные справочные системы в генетике
9. Компьютерная диагностика в генетике. Компьютерный дифференциальный генетический диагноз
10. Генетические информационные базы данных. Цели и задачи генетических баз данных
Кратко о сайте:
Медицинский сайт MedicalPlanet.su является некоммерческим ресурсом для всеобщего и бесплатного развития медицинских работников.
Материалы подготовлены и размещены после модерации редакцией сайта, в составе которой только лица с высшим медицинским образованием.
Ни один из материалов не может быть применен на практике без консультации лечащего врача.
Вопросы, замечания принимаются по адресу admin@medicalplanet.su
По этому же адресу мы оперативно предоставим вам координаты автора, заинтересовавшей вас статьи.
Если планируется использование отрывков размещенных текстов - обязательно размещение обратной ссылки на страницу источник.