Геномные мутации. Гаплоидия. Полиплоидия.

К этому классу мутаций относятся изменения кариотипа, выражающиеся в уменьшении/увеличении числа хромосомных наборов либо числа отдельных хромосом. Существует несколько типов геномных мутаций.

1. Гаплоидия - уменьшение числа хромосом в кариотипе вдвое. Соматические клетки гаплоидного организма содержат одинарный (гаплоидный) набор хромосом (n).
Фенотип гаплоидов имеет следующие особенности:
• у них проявляются рецессивные гены;
• гаплоидные организмы мельче диплоидных, поскольку их клетки вследствие уменьшения дозы генов имеют меньший размер;
• гаплоиды почти бесплодны, поскольку хромосомы не имеют гомологов, и в процессе мейоза образуются несбалансированные гаметы. В редких случаях могут сформироваться гаметы с нередуцированным гаплоидным набором хромосом. У растений слияние таких гамет в процессе самоопыления или при искусственной полиплоидизации дает диплоидную гомозиготу по всем генам, что весьма ценно для решения определенных селекционных задач.

Естественная гаплоидия встречается в жизненном цикле низших грибов, бактерий и одноклеточных водорослей. У некоторых видов членистоногих и насекомых гаплоидными являются самцы, развивающиеся из неплодотворенных клеток. Экспериментально гаплоидные формы были получены у пшеницы, кукурузы и не которых других растений при опылении их либо пыльцой отдаленного вида, либо пыльцой, хромосомный аппарат которой был инактивирован облучением (оба способа стимулировали партеногенетическое развитие яйцеклетки). Гаплоидных зародышей удавалось получить и у животных. Для этого яйцеклетки либо охлаждали, что иногда заставляет их развиваться партеногенетически, либо оплодотворяли спермиями, хромосомы которых были предварительно инактированы облучением,

У человека гаплоидный набор хромосом содержится в норме только в гаметах.

геномные мутации

2. Полиплоидия - кратное увеличение числа хромосомных наборов в клетке. Обычно соматические клетки содержат диплоидный набор хромосом (2n), но иногда возникают триплоидные (3n), тетрашюидные (4n) и тл. клетки и даже целые организмы.

Полиплоиды с повторенным несколько раз одним и тем же набором хромосом называют аутополиплоидами, а полученные от скрещивания организмов, принадлежащих к различным видам, - аллопполиоидами.

Исключительно велика роль полиплоидии в происхождении культурных растений и их селекции. Полиплоидными являются все или большинство культивируемых сортов пшеницы, овса, риса, сахарного тростника, арахиса, свеклы, картофеля, сливы, яблони, груши, апельсина, лимона, земляники, малины. К этому перечню следует добавить тимофеевку, люцерну, табак, хлопчатник, розы, тюльпаны, хризантемы, гладиолусы и многие другие, возделываемые человеком, культуры. Аутополиплоидные мутанты растений обычно крупнее исходной формы. Тетраплоиды, как правило, имеют большую вегетативную массу. Однако у них может резко уменьшиться плодовитость из-за нерасхождения поливалентов в мейозе. Триплоиды - крупные и мощные растения, но полностью или почти полностью стерильные, поскольку продуцируемые ими гаметы содержат неполный набор хромосом. Аутополинлоидные виды размножают вегетативным способом, поскольку плоды таких растений не содержат семян.

У животных аутополиплоиды известны в основном среди гермафродитов (например, земляных червей) и у видов с партеногенетическими самками — дающими жизнеспособное потомство без оплодотворения (некоторые насекомые, ракообразные, рыбы). Такое весьма ограниченное значение полиплоидии в животном мире обусловлено тем, что она нарушает баланс между аутосомами и половыми хромосомами, и немногие аллополиплоидные формы, полученные человеком, как правило, бесплодны.

Полиплоидия может возникнуть в результате: 1) нарушения расхождения хромосом в митозе; 2) слияния клеток соматических тканей либо ихядер; 3) нарушений мейоза, приводящих к образованию гамете нередуцированным числом хромосом.

Для многих видов описаны специфические гены мейоза. Из высших растений наиболее полно изучены в отношении генетики мейоза арабидопсис, кукуруза, рожь и томаты. В составе их геномов в настоящее время известно от 15 до 30 мейотических генов, мутации в которых (мейотические мутаций) нарушают инициацию и правильность протекания этого процесса. В частности, у кукурузы известны мутации: am - неинициируемость мейоза, afd — отсутствие конъюгации хромосом, dsy — неполная конъюгация и другие. Все эти мутации проявляются независимо друг от друга от друга, что свидетельствует о независимом генном контроле отдельных этапов мейоза. Гены, влияющие на мейоз, описаны и у дрозофилы. Один из 82-х таких генов, mei-9, локализован в Х-хромосоме и контролирует мейотическую рекомбинацию у самок.

Знание описанных выше механизмов позволяет искусственно вызывать полиплоидные мутации, что успешнее всего достигается действием физических (облучение, изменение температуры или гидростатического давления) и химических (наркотики, алкалоиды и др.) факторов, повреждающих веретено деления клетки. Первый искусственный растительный аллополиплоид, названный Raphanobrassica (гибрид редьки и капусты, имеющих в наборе по 9 пар хромосом), был получен советским генетиком Г. Д. Карпеченко в 1928 п А почти через 40 лет после этого Б.Л. Астаурову с сотрудниками удалось искусственно получить аллотетраплоидный гибрид двух видов шелкопряда Bombyx.

У человека более 20% всех спонтанных абортусов с аномальным кариотипом имеют триплоидный набор хромосом. Среди описанных в литературе немногим более трех десятков индивидов, имеющих триплоидный набор хромосом, есть девочки с кариотипом 69,ХХХ и мальчики - 69,XXY. Продолжительность жизни детей с триплоидным набором хромосом крайне мала. Практически все они погибают в первые часы или дни после рождения. Причиной этого являются серьезные пороки центральной нервной системы (гидроцефалия, спинномозговые/черепно-мозговые грыжи), а также пороки сердечно-сосудистой системы. Возникновение триплоидии может быть связано: 1) с нерасхождением хромосом в первом делении мейоза у одного из родителей, 2) с нарушением второго деления мейоза, 3) с теоретически возможным оплодотворением одной яйцеклетки двумя спермиями. Так или иначе, в литературе нет ни одного описания повторного рождения в семье ребенка с триплоидией. Случаи мозаицизма по триплоидии (девочки с кариотипом 46,ХХ/69,ХХХ и мальчики - 46,XY/69,XXY) описаны у нескольких детей, доживших до 10 лет.
Тетраплоидию у человека наблюдали только в материале спонтанных абортов.

- Читать далее "Анеуплоидия. Нуллисомия. Моносомия. Полисемия."

Оглавление темы "Генные и хромосомные мутации.":
1. Регуляция транскрипции у прокариот. Негативная и позитивная регуляция генной активности.
2. Специфическая регуляция генной активности. Методы регуляции генной активности.
3. Неспецифическая регуляция генной активности. Компенсация дозы генов у дрозофилы.
4. Компенсация дозы генов у млекопитающих. Современная теория инактивации Х-хромосомы.
5. Регуляция генной активности на уровне репликации. Трансляционная и посттрансляционная регуляция генной активности.
6. Мутации. Теоритические основы мутационной изменчивости.
7. Геномные мутации. Гаплоидия. Полиплоидия.
8. Анеуплоидия. Нуллисомия. Моносомия. Полисемия.
9. Хромосомные мутации. Делеции. Дупликации.
10. Инверсии хромосом. Транслокации хромосом.