Как работает сетчатка? Гистофизиология сетчатки

Свет проходит через слои сетчатки к палочкам и колбочкам, где он поглощается, запуская ряд реакций, которые обеспечивают зрение — исключительно чувствительный процесс. Экспериментальные данные показывают, что для возникновения рецептор-ного потенциала в палочковой клетке достаточно одного фотона. Свет вызывает обесцвечивание зрительных пигментов, причем этот фотохимический процесс усиливается механизмами, вызывающими локальную выработку сигналов, которые в дальнейшем передаются в головной мозг.

Зрительный пигмент палочковых клеток — родопсин, состоит из альдегида витамина А (ретинальдегида), связанного со специфическими белками, известными как опсины. Поскольку палочки имеют более низкое разрешение, они образуют изображения без отчетливых деталей; они также нечувствительны к цветам. Колбочки, с другой стороны, имеют более высокий порог и отвечают за резкие изображения и цветное зрение. У человека они содержат три не полностью охарактеризованных пигмента (йодопсины), которые обеспечивают химическую основу классической трехцветовой теории цветного зрения.

Когда свет воздействует на молекулы родопсина, ретинальдегид подвергается изомеризации, преобразуясь из цис- в транс-форму. Такое изменение приводит к диссоциации ретинальдегида и опсина — эта реакция называется обесцвечиванием. Обесцвечивание зрительного пигмента, инкорпорированного в мембранные диски, увеличивает проводимость мембран дисков для кальция и обусловливает диффузию кальция во внутриклеточное пространство наружного сегмента фоторецептора.

физиология сетчатки
Функции клетки пигментного эпителия сетчатки. Обратите внимание на то, что от апикальной части клетки отходят многочисленные отростки, которые заполняют пространства между наружными сегментами светочувствительных клеток, а мембрана базального участка образует инвагинации в цитоплазму. Данный тип клеток выполняет несколько функций, включая синтез гранул меланина, поглощающих отраженный свет в камере глаза. Этот процесс представлен в правой части рисунка, которая показывает органеллы, участвующие всинтезе меланина. В левой части рисунка лизосомы, содержащие ферменты, синтезированные в гранулярной эндоплазматической сети (грЭПС), сливаются с фагоцитированными апикальными участками фоторецепторов и переваривают их. Помимо этих функций, пигментные клетки, вероятно, участвуют в транспорте ионов, поскольку они поддерживают электрический потенциал между двумя поверхностями мембраны эпителия. Относительно хорошо развитая агранулярная эндоплазматическая сеть (аЭПС) участвует в процессе эстерификации витамина А.

Кальций воздействует на клеточную мембрану, снижая ее проницаемость для ионов натрия, и вызывает гиперполяризацию клетки. Электрические сигналы, возникающие вследствие закрытия этих натриевых каналов, распространяются во внутренний сегмент и через щелевые соединения — к соседним клеткам.

На втором этапе зрительный пигмент восстанавливается, и ионы кальция транспортируются назад в диски в результате энергоемкого процесса. Высокие энергетические потребности объясняют обилие митохондрий около светочувствительного участка палочковых и колбочковых клеток. В отличие от того, что происходит в других рецепторах, где потенциалы действия генерируются посредством деполяризации клетки, палочковые и колбочковые клетки под действием света гиперполяризуются.

Этот сигнал передается на биполярные, амакринные и горизонтальные клетки, а затем — на ганглионарные клетки. Только ганглионарные клетки генерируют потенциалы действия, распространяющиеся по их аксонам, которые передают информацию в мозг.

строение сетчатки

Клинические наблюдения повреждения сетчатки при ее отслойке показывают, что светочувствительные клетки получают питательные вещества из хориокапиллярного слоя. Поверхностное расположение сосудов сетчатки дает возможность легко изучать их с помощью офтальмоскопа. Такое исследование имеет большую ценность в диагностике и оценке заболеваний, влияющих на кровеносные сосуды, таких, как сахарный диабет и повышенное кровяное давление.

У заднего полюса оптической оси располагается центральная ямка — неглубокое вдавление, в центре которого сетчатка имеет очень малую толщину. Это связано с тем, что биполярные и ганглионарные клетки скапливаются по периферии этого углубления, поэтому центральная часть содержит только колбочковые клетки.

Колбочковые клетки в центральной ямке — длинные и узкие, отчего напоминают палочковые клетки. Благодаря этому приспособлению колбочковые клетки располагаются более тесно, и, следовательно, увеличивается острота зрения. В этом участке кровеносные сосуды не проходят над светочувствительными клетками. Свет падает непосредственно на колбочки в центральной части ямки, что обусловливает чрезвычайно высокую остроту зрения в этом участке сетчатки.

- Читать "Гистология конъюнктивы, века. Строение века"

Оглавление темы "Гистология органов чувств":
  1. Гистология сетчатки. Строение сетчатки
  2. Гистология палочковых клеток сетчатки. Строение палочковых клеток
  3. Гистология колбочковых клеток сетчатки. Строение клеток сетчатки
  4. Как работает сетчатка? Гистофизиология сетчатки
  5. Гистология конъюнктивы, века. Строение века
  6. Гистология слезного аппарата. Строение слезной железы
  7. Гистология наружного уха. Строение наружного уха
  8. Гистология среднего уха. Строение среднего уха
  9. Гистология внутреннего уха. Строение внутреннего уха
  10. Гистология перепончатого лабиринта. Строение мешочка и маточки перепончатого лабиринта

Ждем ваших вопросов и рекомендаций: