Матрица ДНК-чипа. Открытая архитектурная система в фармации

Матрица ДНК-чипа — короткая (20—25-мерная) олигонуклеотидная последовательность, причем каждому гену соответствует 15—20 таких олигонуклеотидов, что значительно повышает точность и воспроизводимость результатов. ДНК-чипы позволяют одновременно оценивать экспрессию практически неограниченного количества генов, производить исследование полиморфизма, в том числе и однонуклеотидных замен (SNP). В этом случае синтезируются олигонуклеотиды, специфические для каждой последовательности конкретного гена, учитывая все возможные варианты взаимного расположения нуклеотидов.

При проведении исследований чип гибридизуется с меченой различными способами пробой. При сравнительных исследованиях пробой, как правило, служит кДНК, полученная из контрольного и сравниваемого образцов. В качестве метки используются как радиоактивно меченые молекулы, так и флуоресцентные красители, непосредственно присоединенные к исследуемым образцам. При проведении сравнительного анализа обычно применяют двухцветную детекцию, при которой контрольная и опытная кДНК метятся разными красителями. Результаты регистрируют по интенсивности гибридизационных сигналов тех ячеек чипа, где произошла гибридизация, с последующей компьютерной обработкой данных.

Производятся и упрощенные варианты чипов с небольшим набором генов (в пределах 1000—2000). На нейлоновой мембране фиксируются короткие последовательности известных генов. Они гибридизуются с радиоактивно меченой пробой. Гибридизация детектируется методом радиоавтографии.

Следует отметить, что работа с чипами требует специального дорогостоящего оборудования для проведения гибридизации. Ожидается, что в ближайшие годы цены на комплекты оборудования для производства чипов и работы с ними будут снижены в связи с насыщением рынка.

фармация

Разработка и внедрение в науку и практику новых технологий часто является движущим моментом в развитии медико-биологических отраслей знаний как, например, это было с разработкой в недавнем прошлом технологии ПЦР. Развитие молекулярной биологии в настоящее время многим обязано ПЦР, а теперь и микрочипам. Внедрение технологии микрочипов принципиально и для фармакологии. Разработка новых лекарственных средств уже сейчас начинает основываться на информации о функциональной роли определенных генов в развитии патологии. Поэтому сроки разработок могут сократиться с 10—15 до 5—8 лет.

Открытая архитектурная система не требует сведений о структуре гена или клона и делает возможным идентифицировать практически все процессы транскрипции во многих тканях. Более того, эти методы позволяют идентифицировать неизвестные гены, которые экспрессируются в условиях взаимодействия с лекарствами. Чувствительность методов (1:10 — 300 тыс.), широта охвата (60—90 %) колеблются в зависимости от уровня метода и необходимости его использования.

Открытая архитектурная система использует следующие методы:
— дифференциальный дисплей;
— серийный анализ ДГЭ (SAGE);
— репрезантивный анализ (RDA);
— метод вычитающей гибридизации;
— Gene Calling;
— общий анализ (TOGA).

- Читать далее "Метод дифференциального дисплея. Техника и значение метода дифференциального дисплея"

Оглавление темы "Фармакогеномика и фармакогенетика":
1. Биоаналитические системы в фармакологии. Биоаналитическая аппаратура
2. Дозированные касеты в фармации. Взаимосвязь структуры веществ—фармакокинетических свойств
3. Фармакогеномика. Протеомика и геном человека
4. Расшифровка первичной структуры белков. Секвенирование генома человека
5. Дифференциальная экспрессия гена. Экспрессия генов на фоне болезней
6. Требования и характеристики ДГЭ. Закрытая архитектурная система по генетике
7. Матрица ДНК-чипа. Открытая архитектурная система в фармации
8. Метод дифференциального дисплея. Техника и значение метода дифференциального дисплея
9. Метод вычитающейся гибридизации. Метод репрезентативного дифференциального анализа
10. Результат ДГЭ. Фармакогенетика

Ждем ваших вопросов и рекомендаций: