Белковая буферная система. Гемоглобиновая буферная система. Карбонаты костной ткани.

Белковая буферная система — главный внутриклеточный буфер. Он составляет примерно три четверти буферной ёмкости внутриклеточной жидкости.

Компонентами белкового буфера являются слабодиссоциирующий белок с кислыми свойствами (белок-СООН) и соли сильного основания (белок-COONa). При нарастании уровня кислот они взаимодействуют с солью белка с образованием нейтральной соли и слабой кислоты. При увеличении концентрации оснований реакция их происходит с белком с кислыми свойствами. В результате вместо сильного основания образуется слабоосновная соль.

кислотно-щелочные состояния

Гемоглобиновая буферная система

Гемоглобиновая буферная система — наиболее ёмкий буфер крови — составляет более половины всей её буферной ёмкости. Гемоглобиновый буфер состоит из кислого компонента — оксигенированного Нb — Нb02 и основного — неоксигенированного. Нb02 примерно в 80 раз сильнее диссоциирует с отдачей в среду Н+, чем Нb. Соответственно, он больше связывает катионов, главным образом К+.

Основная роль гемоглобиновой буферной системы заключается в её участии в транспорте С02 от тканей к лёгким.

• В капиллярах большого круга кровообращения Нb02 отдаёт кислород. В эритроцитах С02 взаимодействует с Н20 и образуется Н2С03. Эта кислота диссоциирует на НС03- и Н+, который соединяется с Нb. Анионы НС03- из эритроцитов выходят в плазму крови, а в эритроциты поступает эквивалентное количество анионов СП. Остающиеся в плазме крови ионы Na+ взаимодействуют с НС03- и благодаря этому восстанавливают её щелочной резерв.
• В капиллярах лёгких, в условиях низкого рС02 и высокого р02 НЬ присоединяет кислород с образованием Нb02. Карбаминовая связь разрывается, в связи с чем высвобождается С02. При этом НС03- из плазмы крови поступает в эритроциты (в обмен на ионы Сl-) и взаимодействует с Н+, отщепившимся от Нb в момент его оксигенации. Образующаяся Н2С03 под влиянием карбоангидразы расщепляется на С02 и Н20. С02 диффундирует в альвеолы и выводится из организма.

Карбонаты костной ткани

Карбонаты костной ткани функционируют как депо для буферных систем организма. В костях содержится большое количество солей угольной кислоты: карбонаты кальция, натрия, калия и др. При остром увеличении содержания кислот (например, при острой сердечной, дыхательной или почечной недостаточности, шоке, коме и других состояниях) кости могут обеспечивать до 30-40% буферной ёмкости. Высвобождение карбоната кальция в плазму крови способствует эффективной нейтрализации избытка Н+. В условиях хронической нагрузки кислыми соединениями (например, при хронической сердечной, печёночной, почечной, дыхательной недостаточности) кости могут обеспечивать до 50% буферной ёмкости биологических жидкостей организма.

Оглавление темы "Нарущения кислотно-щелочного равновесия.":
1. Гипокальциемия. Причины и последствия гипокальциемии.
2. Нарушения обмена фосфора. Гиперфосфатемия.
3. Гипофосфатемия. Причины и проявления гипофосфатемии.
4. Нарушения обмена магния. Гипермагниемия. Причины и проявления гипермагниемии.
5. Гипомагниемия. Причины и проявления гипомагниемии.
6. Кислотно-щелочное равновесие. Концентрация ионов водорода.
7. Показатели оценки кислотно-щелочного равновесия. Механизмы устранения сдвигов кислотно-щелочного равновесия.
8. Белковая буферная система. Гемоглобиновая буферная система. Карбонаты костной ткани.
9. Роль легких и почек в регуляции кислотно-щелочного равновесия.
10. Роль печени в регуляции кислотно-щелочного равновесия.

Ждем ваших вопросов и рекомендаций: